[19] C. F. Shen et al., “Process optimization and scale-up for production of rabies
vaccine live adenovirus vector (AdRG1.3),” Vaccine, vol. 30, no. 2, pp. 300–306,
Jan. 2012, doi: 10.1016/j.vaccine.2011.10.095
[20] T. C. Mast et al., “International epidemiology of human pre-existing adenovirus
(Ad) type-5, type-6, type-26 and type-36 neutralizing antibodies: Correlates of high
Ad5 titers and implications for potential HIV vaccine trials,” Vaccine, vol. 28, no. 4,
pp. 950–957, Jan. 2010, doi: 10.1016/j.vaccine.2009.10.145
[21] X. Wang et al., “Neutralizing antibody responses to enterovirus and adenovirus in
healthy adults in China,” Emerg. Microbes Infect., vol. 3, May 2014, Art no. e30,
doi: 10.1038/emi.2014.30
[22] L. Holterman et al., “Novel replication-incompetent vector derived from adenovirus
type 11 (Ad11) for vaccination and gene therapy: Low seroprevalence and non-
cross-reactivity with Ad5,” J. Virol., vol. 78, no. 23, pp. 13207–13215, Dec. 2004,
doi: 10.1128/jvi.78.23.13207-13215.2004
[23] R. Vogels et al., “Replication-deficient human adenovirus type 35 vectors for gene
transfer and vaccination: Efficient human cell infection and bypass of preexisting
adenovirus immunity,” J. Virol., vol. 77, no. 15, pp. 8263–8271, Aug. 2003, doi:
10.1128/jvi.77.15.8263-8271.2003
[24] E. A. Weaver and M. A. Barry, “Low seroprevalent species D adenovirus vectors as
influenza vaccines,” PloS one, vol. 8, no. 8, Aug 2013, Art no. e73313, doi: 10.13
71/journal.pone.0073313
[25] N. C. Kyriakidis, A. Lopez-Cortes, E. V. Gonzalez, A. B. Grimaldos, and E. O.
Prado, “SARS-CoV-2 vaccines strategies: a comprehensive review of phase 3
candidates,” NPJ Vaccines, vol. 6, no. 1, p. 28, Feb. 2021, doi: 10.1038/s41541-
021-00292-w
[26] N. Belousova et al., “Genetically targeted adenovirus vector directed to CD40-
expressing cells,” J. Virol., vol. 77, no. 21, pp. 11367–11377, Nov. 2003, doi:
10.1128/jvi.77.21.11367-11377.2003
[27] N. Belousova, V. Krendelchtchikova, D. T. Curiel, and V. Krasnykh, “Modulation
of adenovirus vector tropism via incorporation of polypeptide ligands into the fiber
protein,” J. Virol., vol. 76, no. 17, pp. 8621–8631, Sep. 2002, doi: 10.1128/jvi.76.1
7.8621-8631.2002
[28] D. Sharon and A. Kamen, “Advancements in the design and scalable production of
viral gene transfer vectors,” Biotechnol. Bioeng., vol. 115, no. 1, pp. 25–40, Jan.
2018, doi: 10.1002/bit.26461
[29] G. R. Nemerow, P. L. Stewart, and V. S. Reddy, “Structure of human adenovirus,” Curr.
Opin. Virol., vol. 2, no. 2, pp. 115–121, Apr. 2012, doi: 10.1016/j.coviro.2011.12.008
[30] N. Arnberg, “Adenovirus receptors: implications for targeting of viral vectors,”
Trends in Pharmacological Sciences, vol. 33, no. 8, pp. 442–448, Aug. 2012, doi:
10.1016/j.tips.2012.04.005
[31] D. Majhen and A. Ambriovic-Ristov, “Adenoviral vectors - How to use them in
cancer gene therapy?,” Virus Res., vol. 119, no. 2, pp. 121–133, Aug. 2006, doi:
10.1016/j.virusres.2006.02.001
[32] X. Danthinne and M. J. Imperiale, “Production of first generation adenovirus vec-
tors: a review,” Gene Therapy, vol. 7, no. 20, pp. 1707–1714, Oct. 2000, doi: 10.103
8/sj.gt.3301301
[33] I. Kovesdi and S. J. Hedley, “Adenoviral producer cells,” Viruses-Basel, vol. 2, no.
8, pp. 1681–1703, Aug. 2010, doi: 10.3390/v2081681
[34] Y. C. Lin et al., “Genome dynamics of the human embryonic kidney 293 lineage in
response to cell biology manipulations,” Nat. Commun., vol. 5, Sep. 2014, Art no.
4767, doi: 10.1038/ncomms5767
288
Bioprocessing of Viral Vaccines